
International Journal of Engineering and Computational Applications Vol. 1, Iss. 2, pp. 01-03 Mar-Apr 2025 www.ComputationalEngineeringJournal.com

 1 | P a g e

FPGA-Based Acceleration of Convolutional Neural Networks for Image Recognition

John A Doe 1*, Dr. Femi Adeyemi 2
1 Department of Electrical Engineering, Massachusetts Institute of Technology (MIT), USA
2 School of Engineering, University of Lagos, Nigeria

* Corresponding Author: John A Doe

Article Info

Volume: 01
Issue: 02
March-April 2025
Received: 28-02-2025
Accepted: 20-03-2025
Page No: 01-03

Abstract
The rapid advancement of deep learning, particularly Convolutional Neural Networks
(CNNs), has revolutionized image recognition. However, the computational intensity
and power demands of CNNs present significant challenges for real-time, embedded,
and edge applications. Field Programmable Gate Arrays (FPGAs) have emerged as
a promising hardware platform to accelerate CNN inference, offering a balance
between performance, flexibility, and energy efficiency. This paper presents a
comprehensive overview of FPGA-based CNN acceleration for image recognition,
covering architectural design, implementation strategies, performance analysis,
and future directions. Recent research and practical implementations are discussed,
highlighting the benefits and challenges of deploying CNNs on FPGAs.

Keywords: FPGA Acceleration, Convolutional Neural Networks (CNNs), Edge and Embedded AI, Energy-Efficient
Computing, Quantization and Compression

1. Introduction
Image recognition is a cornerstone of modern artificial intelligence, powering applications from autonomous vehicles
and medical diagnostics to industrial automation and smart devices. Convolutional Neural Networks (CNNs) have set new
benchmarks in image recognition accuracy, but their deep architectures require substantial computational and memory
resources.
Traditional hardware platforms—CPUs and GPUs—provide the necessary computational power but are often unsuitable for
power-constrained, real-time, or embedded scenarios due to high energy consumption or lack of flexibility. FPGAs, with their
reconfigurable logic and parallel processing capabilities, offer an attractive alternative for accelerating CNN inference,
especially in edge and embedded systems 53.

2. Motivation for FPGA Acceleration of CNNs
2.1 Computational Demands of CNNs
CNNs consist of multiple layers—convolutional, pooling, activation, and fully connected layers—each involving intensive
matrix and vector operations. Large-scale models such as VGG, ResNet, and YOLO require billions of operations per inference,
making real-time processing challenging on general-purpose processors 5.

2.2 Limitations of CPUs and GPUs
• CPUs: Offer flexibility but limited parallelism, leading to high latency for deep CNNs.
• GPUs: Provide massive parallelism and high throughput but consume significant power and are less suitable for custom

optimizations in embedded contexts [5].
• ASICs: Deliver high performance and low power but lack post-fabrication flexibility and have high development costs.

2.3 Advantages of FPGAs
• Parallelism: FPGAs can exploit the inherent parallelism of CNNs by mapping multiple operations to hardware.
• Reconfigurability: Hardware can be tailored to specific CNN architectures and updated post-deployment.

http://www.computationalengineeringjournal.com/

International Journal of Engineering and Computational Applications Vol. 1, Iss. 2, pp. 01-03 Mar-Apr 2025 www.ComputationalEngineeringJournal.com

 2 | P a g e

• Energy Efficiency: FPGAs achieve high throughput at a
fraction of the power consumption of GPUs,
making them ideal for edge and embedded AI
applications 56.

• Custom Precision: Support for fixed-point and custom-
precision arithmetic enables further optimization of
speed and resource usage6.

3. FPGA Architecture for CNN Acceleration
3.1 Basic Architecture
An FPGA-based CNN accelerator typically consists of:
• Processing Elements (PEs): Parallel units for

convolution, pooling, and activation functions.
• On-chip Memory: Buffers for input data, weights, and

intermediate feature maps.
• DMA Controllers: Manage data transfer between

external memory and on-chip buffers.
• Control Logic: Orchestrates data flow and layer

execution.

3.2 Design Strategies
• Pipelining: Overlaps computation stages to maximize

throughput.
• Parallelism: Distributes computations across multiple

PEs for concurrent execution.
• Resource Sharing: Efficiently reuses hardware blocks

for different CNN layers35.
• Data Quantization: Reduces bit-width of operations

(e.g., 16-bit or 8-bit fixed-point) to save resources and
increase speed6.

3.3 Implementation Example
A recent implementation on a Xilinx Virtex-7 FPGA used
Verilog to design an accelerator that balanced computational
efficiency and resource usage, utilizing 588 Look-Up Tables
(LUTs) and 353 Flip Flops3. Another design on a Z-7020
FPGA used 16-bit fixed-point operations and kernel
binarization to optimize performance and minimize hardware
cost6.

4. CNN Mapping and Optimization on FPGAs
4.1 Layer-wise Mapping
• Convolutional Layers: Mapped to parallel PEs for

simultaneous processing of multiple kernels and input
channels.

• Pooling Layers: Implemented as simple max or average
operations, often fused with convolution for efficiency.

• Activation Functions: Realized using lookup tables or
piecewise linear approximations to minimize resource
usage.

4.2 Dataflow Optimization
• Systolic Arrays: Enable efficient matrix-vector

multiplication by streaming data through a grid of PEs5.
• Resource Multiplexing: Allows the same hardware to

be used for different operations (e.g., convolution and
matrix multiplication), reducing area and power5.

• Memory Hierarchy: On-chip buffers reduce latency
and external memory bandwidth requirements.

4.3 Quantization and Compression
• Fixed-Point Arithmetic: Replacing floating-point with

fixed-point reduces hardware complexity and power

consumption, with minimal impact on accuracy6.
• Model Pruning and Binarization: Removing

redundant weights and binarizing kernels further reduces
resource demands and accelerates computation6.

5. Performance Evaluation
5.1 Benchmarking Metrics
• Throughput (GOPS): Giga Operations Per Second,

measuring raw computational performance.
• Latency: Time taken for a single inference.
• Power Consumption (W): Total energy usage during

operation.
• Energy Efficiency (GOPS/W): Throughput per watt, a

key metric for embedded and edge applications5.

5.2 Comparative Analysis
An FPGA-based resource reuse accelerator for 1D-CNN-
LSTM achieved 7.34 GOPS at 5.022 W, with an energy
efficiency of 1.46 GOPS/W, outperforming CPUs by 73
times and GPUs by over 9 times in energy efficiency for radar
emitter signal recognition5. Another design achieved a
recognition rate of 97.53% while maintaining low power
consumption, demonstrating the suitability of FPGAs for
real-time, power-constrained applications5.

5.3 Application to Image Recognition
FPGA-accelerated CNNs have been successfully deployed
for image recognition tasks such as object detection
(YOLOv4-Tiny), achieving real-time performance on edge
devices1. The flexibility of FPGAs allows adaptation to
various CNN models and image recognition benchmarks.

6. Case Studies and Real-World Applications
6.1 YOLOv4-Tiny Object Detection
A method for accelerating YOLOv4-Tiny on FPGA
demonstrated the feasibility of deploying complex object
detection networks in resource-constrained environments,
balancing speed and accuracy1.

6.2 Radar Signal Recognition
FPGA-based 1D-CNN-LSTM models have been used for
radar emitter signal recognition, achieving high accuracy and
energy efficiency, making them suitable for communication
security and electronic support systems5.

6.3 Edge AI and IoT
FPGAs are increasingly used in edge AI scenarios, where
real-time image recognition is required under strict power
and latency constraints, such as in smart cameras, drones, and
autonomous vehicles46.

7. Challenges and Limitations
7.1 Resource Constraints
FPGAs have limited on-chip memory and logic resources
compared to GPUs, requiring careful design and optimization
to fit large CNN models7.

7.2 Design Complexity
Developing efficient FPGA accelerators requires expertise in
hardware design, parallel programming, and deep learning,
making the development process more complex than for
software-based platforms7.

http://www.computationalengineeringjournal.com/

International Journal of Engineering and Computational Applications Vol. 1, Iss. 2, pp. 01-03 Mar-Apr 2025 www.ComputationalEngineeringJournal.com

 3 | P a g e

7.3 Scalability
Scaling FPGA designs to support very large models or batch
processing can be challenging due to hardware limitations
and memory bandwidth bottlenecks7.

7.4 Portability
FPGA designs are often tailored to specific devices or
models, limiting portability and reusability across different
platforms or CNN architectures7.

8. Future Directions
8.1 High-Level Synthesis (HLS) and Frameworks
The adoption of HLS tools (e.g., Intel OpenCL, Xilinx Vitis)
and deep learning frameworks is streamlining FPGA
development, enabling faster prototyping and deployment of
CNN accelerators 2.

8.2 Dynamic Reconfiguration
Future FPGAs may support dynamic reconfiguration,
allowing hardware to adapt to different CNN layers or models
at runtime for optimal performance and resource utilization7.

8.3 Support for Advanced Models
Research is ongoing to efficiently map more complex models
(e.g., Transformers, 3D CNNs) and support mixed-precision
or adaptive computation on FPGAs.

8.4 Integration with Edge and Cloud AI
FPGAs are expected to play a key role in heterogeneous
computing platforms, complementing CPUs and GPUs in
edge-cloud AI pipelines for scalable, energy-efficient image
recognition27.

9. Conclusion
FPGAs offer a compelling platform for accelerating CNN
inference in image recognition, combining high performance,
energy efficiency, and adaptability. Through parallelism,
custom precision, and resource sharing, FPGA-based
accelerators can meet the stringent requirements of real-time,
embedded, and edge AI applications. While challenges
remain in design complexity and scalability, ongoing
advances in tools, architectures, and model optimization
continue to expand the potential of FPGAs in deep learning.
As AI-powered image recognition becomes ubiquitous,
FPGA acceleration will be central to enabling intelligent,
responsive, and energy-efficient systems.

10. References
1. Zhang Y, et al. Acceleration and implementation of

convolutional neural networks for YOLOv4-Tiny object
detection algorithm accelerator based on FPGA.
ScienceDirect. 2023. Available
from: https://www.sciencedirect.com/science/article/pii/
S105120042300283X

2. BittWare. FPGA Acceleration of Convolutional Neural
Networks (CNNs). White Paper. 2023. Available
from: https://www.bittware.com/resources/cnn/

3. Patel P, et al. Implementation of FPGA-based
Accelerator for Convolutional Neural Networks. Int J
Res Sci Eng. 2024;4(03):10–16. Available
from: https://journal.hmjournals.com/index.php/IJRISE/
article/view/3838

4. ITM Conferences. Implementing Convolutional Neural
Networks on FPGA. 2023. Available

from: https://www.itm-
conferences.org/articles/itmconf/pdf/2023/02/itmconf_c
ocia2023_02004.pdf

5. Wang S, et al. Efficient FPGA Implementation of
Convolutional Neural Networks and LSTM for Radar
Emitter Signal Recognition. Frontiers in Neuroscience.
2024;18:10857097. Available
from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10857
097/

6. Li X, et al. FPGA Implementation of a Convolutional
Neural Network and Its Application in Agriculture.
Agriculture. 2022;12(11):1849. Available
from: https://www.mdpi.com/2077-0472/12/11/1849

7. Suda N, et al. A survey of FPGA-based accelerators for
convolutional neural networks. Neural Comput Appl.
2019;32:1109–1139. Available
from: https://dl.acm.org/doi/10.1007/s00521-018-3761-
1

http://www.computationalengineeringjournal.com/

