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Abstract 
The rapid advancement of deep learning, particularly Convolutional Neural Networks 
(CNNs), has revolutionized image recognition. However, the computational intensity 
and power demands of CNNs present significant challenges for real-time, embedded, 
and edge applications. Field Programmable Gate Arrays (FPGAs) have emerged as 
a promising hardware platform to accelerate CNN inference, offering a balance 
between performance, flexibility, and energy efficiency. This paper presents a 
comprehensive overview of FPGA-based CNN acceleration for image recognition, 
covering architectural design, implementation strategies, performance analysis, 
and future directions. Recent research and practical implementations are discussed, 
highlighting the benefits and challenges of deploying CNNs on FPGAs. 
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1. Introduction 
Image recognition is a cornerstone of modern artificial intelligence, powering applications from autonomous vehicles 
and medical diagnostics to industrial automation and smart devices. Convolutional Neural Networks (CNNs) have set new 
benchmarks in image recognition accuracy, but their deep architectures require substantial computational and memory 
resources. 
Traditional hardware platforms—CPUs and GPUs—provide the necessary computational power but are often unsuitable for 
power-constrained, real-time, or embedded scenarios due to high energy consumption or lack of flexibility. FPGAs, with their 
reconfigurable logic and parallel processing capabilities, offer an attractive alternative for accelerating CNN inference, 
especially in edge and embedded systems 53. 
 
2. Motivation for FPGA Acceleration of CNNs 
2.1 Computational Demands of CNNs 
CNNs consist of multiple layers—convolutional, pooling, activation, and fully connected layers—each involving intensive 
matrix and vector operations. Large-scale models such as VGG, ResNet, and YOLO require billions of operations per inference, 
making real-time processing challenging on general-purpose processors 5. 
 
2.2 Limitations of CPUs and GPUs 
• CPUs: Offer flexibility but limited parallelism, leading to high latency for deep CNNs. 
• GPUs: Provide massive parallelism and high throughput but consume significant power and are less suitable for custom 

optimizations in embedded contexts [5]. 
• ASICs: Deliver high performance and low power but lack post-fabrication flexibility and have high development costs. 
 
2.3 Advantages of FPGAs 
• Parallelism: FPGAs can exploit the inherent parallelism of CNNs by mapping multiple operations to hardware. 
• Reconfigurability: Hardware can be tailored to specific CNN architectures and updated post-deployment. 
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• Energy Efficiency: FPGAs achieve high throughput at a 
fraction of the power consumption of GPUs, 
making them ideal for edge and embedded AI 
applications 56. 

• Custom Precision: Support for fixed-point and custom-
precision arithmetic enables further optimization of 
speed and resource usage6. 

 
3. FPGA Architecture for CNN Acceleration 
3.1 Basic Architecture 
An FPGA-based CNN accelerator typically consists of: 
• Processing Elements (PEs): Parallel units for 

convolution, pooling, and activation functions. 
• On-chip Memory: Buffers for input data, weights, and 

intermediate feature maps. 
• DMA Controllers: Manage data transfer between 

external memory and on-chip buffers. 
• Control Logic: Orchestrates data flow and layer 

execution. 
 
3.2 Design Strategies 
• Pipelining: Overlaps computation stages to maximize 

throughput. 
• Parallelism: Distributes computations across multiple 

PEs for concurrent execution. 
• Resource Sharing: Efficiently reuses hardware blocks 

for different CNN layers35. 
• Data Quantization: Reduces bit-width of operations 

(e.g., 16-bit or 8-bit fixed-point) to save resources and 
increase speed6. 

 
3.3 Implementation Example 
A recent implementation on a Xilinx Virtex-7 FPGA used 
Verilog to design an accelerator that balanced computational 
efficiency and resource usage, utilizing 588 Look-Up Tables 
(LUTs) and 353 Flip Flops3. Another design on a Z-7020 
FPGA used 16-bit fixed-point operations and kernel 
binarization to optimize performance and minimize hardware 
cost6. 
 
4. CNN Mapping and Optimization on FPGAs 
4.1 Layer-wise Mapping 
• Convolutional Layers: Mapped to parallel PEs for 

simultaneous processing of multiple kernels and input 
channels. 

• Pooling Layers: Implemented as simple max or average 
operations, often fused with convolution for efficiency. 

• Activation Functions: Realized using lookup tables or 
piecewise linear approximations to minimize resource 
usage. 

 
4.2 Dataflow Optimization 
• Systolic Arrays: Enable efficient matrix-vector 

multiplication by streaming data through a grid of PEs5. 
• Resource Multiplexing: Allows the same hardware to 

be used for different operations (e.g., convolution and 
matrix multiplication), reducing area and power5. 

• Memory Hierarchy: On-chip buffers reduce latency 
and external memory bandwidth requirements. 

 
4.3 Quantization and Compression 
• Fixed-Point Arithmetic: Replacing floating-point with 

fixed-point reduces hardware complexity and power 

consumption, with minimal impact on accuracy6. 
• Model Pruning and Binarization: Removing 

redundant weights and binarizing kernels further reduces 
resource demands and accelerates computation6. 

 
5. Performance Evaluation 
5.1 Benchmarking Metrics 
• Throughput (GOPS): Giga Operations Per Second, 

measuring raw computational performance. 
• Latency: Time taken for a single inference. 
• Power Consumption (W): Total energy usage during 

operation. 
• Energy Efficiency (GOPS/W): Throughput per watt, a 

key metric for embedded and edge applications5. 
 
5.2 Comparative Analysis 
An FPGA-based resource reuse accelerator for 1D-CNN-
LSTM achieved 7.34 GOPS at 5.022 W, with an energy 
efficiency of 1.46 GOPS/W, outperforming CPUs by 73 
times and GPUs by over 9 times in energy efficiency for radar 
emitter signal recognition5. Another design achieved a 
recognition rate of 97.53% while maintaining low power 
consumption, demonstrating the suitability of FPGAs for 
real-time, power-constrained applications5. 
 
5.3 Application to Image Recognition 
FPGA-accelerated CNNs have been successfully deployed 
for image recognition tasks such as object detection 
(YOLOv4-Tiny), achieving real-time performance on edge 
devices1. The flexibility of FPGAs allows adaptation to 
various CNN models and image recognition benchmarks. 
 
6. Case Studies and Real-World Applications 
6.1 YOLOv4-Tiny Object Detection 
A method for accelerating YOLOv4-Tiny on FPGA 
demonstrated the feasibility of deploying complex object 
detection networks in resource-constrained environments, 
balancing speed and accuracy1. 
 
6.2 Radar Signal Recognition 
FPGA-based 1D-CNN-LSTM models have been used for 
radar emitter signal recognition, achieving high accuracy and 
energy efficiency, making them suitable for communication 
security and electronic support systems5. 
 
6.3 Edge AI and IoT 
FPGAs are increasingly used in edge AI scenarios, where 
real-time image recognition is required under strict power 
and latency constraints, such as in smart cameras, drones, and 
autonomous vehicles46. 
 
7. Challenges and Limitations 
7.1 Resource Constraints 
FPGAs have limited on-chip memory and logic resources 
compared to GPUs, requiring careful design and optimization 
to fit large CNN models7. 
 
7.2 Design Complexity 
Developing efficient FPGA accelerators requires expertise in 
hardware design, parallel programming, and deep learning, 
making the development process more complex than for 
software-based platforms7. 
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7.3 Scalability 
Scaling FPGA designs to support very large models or batch 
processing can be challenging due to hardware limitations 
and memory bandwidth bottlenecks7. 
 
7.4 Portability 
FPGA designs are often tailored to specific devices or 
models, limiting portability and reusability across different 
platforms or CNN architectures7. 
 
8. Future Directions 
8.1 High-Level Synthesis (HLS) and Frameworks 
The adoption of HLS tools (e.g., Intel OpenCL, Xilinx Vitis) 
and deep learning frameworks is streamlining FPGA 
development, enabling faster prototyping and deployment of 
CNN accelerators 2. 
 
8.2 Dynamic Reconfiguration 
Future FPGAs may support dynamic reconfiguration, 
allowing hardware to adapt to different CNN layers or models 
at runtime for optimal performance and resource utilization7. 
 
8.3 Support for Advanced Models 
Research is ongoing to efficiently map more complex models 
(e.g., Transformers, 3D CNNs) and support mixed-precision 
or adaptive computation on FPGAs. 
 
8.4 Integration with Edge and Cloud AI 
FPGAs are expected to play a key role in heterogeneous 
computing platforms, complementing CPUs and GPUs in 
edge-cloud AI pipelines for scalable, energy-efficient image 
recognition27. 
 
9. Conclusion 
FPGAs offer a compelling platform for accelerating CNN 
inference in image recognition, combining high performance, 
energy efficiency, and adaptability. Through parallelism, 
custom precision, and resource sharing, FPGA-based 
accelerators can meet the stringent requirements of real-time, 
embedded, and edge AI applications. While challenges 
remain in design complexity and scalability, ongoing 
advances in tools, architectures, and model optimization 
continue to expand the potential of FPGAs in deep learning. 
As AI-powered image recognition becomes ubiquitous, 
FPGA acceleration will be central to enabling intelligent, 
responsive, and energy-efficient systems. 
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